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Although much progress has been made in understand-

ing landscape processes, a thorough understanding of in-

teractions between processes in and between landscape

compartments and ecosystems is still largely lacking

(Heymans et al., 2002, Rietkerk et al., 2002). This is partly

due to discrepancies between the scales at which various

processes operate, but more importantly, to discrepancies

in scale regarding the questions asked, the models used

and the data sources available (Gosselink & Lee, 1989).

The scale of an investigation may have profound effects

on the patterns one finds. Dynamic, statistical and spa-

tial modelling are each used to  integrate process infor-

mation across scales. Such attempts have two directions.

First, detailed studies carried out at finer scales can be in-

tegrated through dynamic models that can be used to

study coarser scale processes. Typically, landscape mod-

els combine information on ecological processes with

spatial information available through GIS (Arheimer &

Brandt, 2000, Van den Bergh et al., 2001, Pieterse et al.,
2002). A second approach to landscape analysis involves

downscaling from studies that start at larger scales (e.g.,

entire river catchments) and work toward understanding

relationships between geomorphology, geohydrology and

land use patterns at smaller scales (see Burrough & Pfef-

fer, Whigham  et al., Mander et al.; this issue).

In this paper we analyse some scale issues in landscape

science and we especially focus on up-scaling. After in-

troducing some relevant definitions we address pre-

dictability in relation to space-time scaling. Next, we pre-

sent three examples from the literature of scale-depen-

dent processes each operating at a very different spatial

and temporal scale. These examples are chosen to demon-

strate that there are constraints in up-scaling approaches

and they in fact show us that the problem of scale depen-

dency is scale-independent. After discussing the implica-

tions of the scale of processes for data analysis and mod-

elling we present two modelling studies: an empirical sta-

tistical model and a mechanistic model. In developing

these models for up-scaling or aggregation we had to

overcome several scale issues. Both approaches had their

specific scale related constraints and possibilities, which

may serve as general lessons. Finally, we formulate rules

for application to avoid scaling errors.

Definitions
Generally speaking the scale of an object or process is its

spatial or temporal dimension.  In scaling studies the

ability to detect patterns in space or time is a function of

both the extent and the grain of an investigation (O’Neill

et al., 1986). Extent is defined generally as the overall area
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encompassed by a study or the duration of the study. Grain
or support is the size of the individual units of observation

(Wiens, 1989) and is usually the largest area or time in-

terval for which the property of interest is considered ho-

mogeneous (Bierkens et al., 2000). Coverage is the ratio of

the sum of areas or time intervals for all support units and

the extent (Bierkens et al., 2000). Thus, in a spatial exam-

ple coverage refers to the part of the research area that is

covered by samples, and in a temporal example it implies

the sum of time intervals of observations divided by the

total study time. Loosely speaking, up-scaling means

transferring information from a smaller scale to a larger

scale. More specifically up-scaling or aggregation is defined

as increasing the support of the research area or the re-

search time. Changing the extent of the research area or

research time usually involves going from a smaller to a

larger extent. Increasing the extent is called extrapolation.

Interpolation involves increasing the coverage of the re-

search area or research time, which is in fact the reverse of

sampling (Bierkens et al., 2000).  

Note that MacArthur & Levins (1964) considered grain in

a different way as we defined above. They defined grain

as a function of how animals exploit resource patchiness

in environments. The observational window of a con-

sumer is then referred to as the grain at which a consumer

perceives its habitat (O’Neill et al., 1988, Milne, 1992,

Ritchie, 1998). Differences in the scale of patchiness of

the resource and the grain of observation by the consumer

will affect the intensity of exploitation by the consumer.

The size of the habitat that is covered by the consumer

when searching for resource is then called the extent.

Predictability and space-time scaling
Our ability to predict ecological phenomena depends on

the relationships between spatial and temporal scales of

variation. Although there are no standard functions that

define the appropriate units for space-time comparisons

in ecology, with increased spatial scale, the time scale of

important processes may also increase. This is because

the relevant processes may operate at slower rates, their

effects may involve time lags and their indirect effects may

become increasingly important (Delcourt et al., 1983,

Clark, 1985). Thus, as the spatial scale of a system in-

creases, so also may its temporal scale, although these

space-time scalings differ for different systems. Studies

over a long time and at a fine spatial scale have low pre-

dictive capacity at larger scales; they are simply too site-

specific. Short-term studies conducted at broad spatial

scales generally have a high apparent predictability but

may be less capable of characterizing small-scale pro-

cesses. This is pseudo-predictability since the natural dy-

namics of the system operate at much longer time scales

than the period of study. It is as if we were to take two

snapshots of a forest a few moments apart and use the

first to predict the second (Wiens, 1989). The first photo-

graph is a perfect predictor for the second, but it does not

teach us anything about the relevant processes in a for-

est. Investigations that are designed to include a close cor-

respondence between the time and space scales probably

have the highest predictive power. In Fig. 1 we present a

space-time diagram of ecological, hydrological and atmo-

spheric processes illustrating the spatial and temporal

scales that must be considered. Processes situated within

the elliptic space are hypothesized to have a high pre-

dictability, whereas soil processes and peat growth are ex-

amples of processes with low predictability. Prediction of

the activity of micro-decomposers or meteorological pro-

cesses such as a thunderstorm event or the development

of a cold front have a high apparent predictability over a

wide range of scales.

In Figure 2 we depict the relationship between recovery

time of events and scale (Dobson et al., 1997). Remarkably,
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modelling and the difficulties that they present in relating

ecological information to policy decisions should be kept

in mind when reading the three examples presented be-

low. The examples illustrate that it is essential to identify

the scale at which processes operate in order to design ap-

propriate sampling schemes and perform sound analy-

ses of data. 

Example 1: Denitrification in flood-
plains
Denitrification is the process in which micro-organisms

use oxygen obtained from nitrate for their respiration.

The process results in the conversion of nitrate to gaseous

forms of nitrogen (primarily N2 and N2O) that are lost to

the atmosphere. Since denitrification decreases NO3 con-

centrations and produces N2O, the concentrations of NO3

and N2O in groundwater should be inversely related. The

absence of this relationship found in field samplings

(Weller et al. 1994) suggests that the N2O pool is con-

trolled by processes in addition to denitrification. N2O

can be produced by nitrification and can both be pro-

duced and consumed by denitrification. In addition, dis-

solved N2O can be carried through the soil in groundwa-

ter or lost to the atmosphere. So, instead of measuring

concentrations of two variables related to the process, it

makes more sense to measure the rate of N2O emission.

This can be measured in closed chambers, in which

according to these authors a groundwater system needs a

longer time to recover after groundwater exploitation

than it takes for a part of the land surface to recover after

an atomic bomb explosion.

An important implication from Figures 1 and 2 is that the

questions asked by policy makers rarely are directed to the

dynamics of the system and to the means (both financial-

ly and in time) that are given to those studying these pro-

cesses. Often, ecologists have been urged by resource

managers to answer questions and make and test predic-

tions on relatively short time scales (some years), regard-

less of the spatial scale of the investigation. Politicians are

frequently only interested in time horizons related to their

careers, and since most of them are not in powerful posi-

tions before their mid forties, fifteen years ahead is about

the maximum time span still enabling them to harvest

within their active career. Thus, policy is often based on

relatively short-term studies regardless the extent of the

area and the rate at which the important processes occur.

Especially, predicting the effects of human interference in

processes such as peat growth, groundwater flow,

groundwater composition and global climate processes

require long term monitoring data. In comparison, short-

term studies conducted at broad spatial scales have a high

apparent predictability, since the natural dynamics of the

system are so much longer than the period of study.

The difficulties in matching relevant scales in ecological

Figure 1. Predictability in
relation to the space-time
scaling of processes. (Left)

Figure 2. Recovery in
relation to spatial scale.
(Right)
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gasses emitted from the soil are measured. However

closed chambers can only be used for short periods be-

cause temperature increase and gas buildup can change

gas emission rates (Ryden & Rolston, 1983). Weller et al.
(1994) used more than thirty chambers of 1x1 meter in a

floodplain and did not find any obvious spatial pattern of

N2O emission rates nor any match with the pattern of

N2O or NO3 in groundwater. Apart from N2O emission

rates being quite spatially variable, repeated measure-

ments also showed big differences. Gas emission can also

be measured using larger flow-through chambers. Larg-

er chambers (20x1m) are more difficult to set up, but the

constant flow of air minimizes temperature change and

gas buildup over longer periods resulting in more useful

data for monitoring emissions for days at a time (Jury et
al., 1982). Weller et al. (1994) installed two flow-through

chambers in a floodplain, one on a low-lying, frequently

waterlogged soil and one on a drier site. They observed a

clear seasonal cycle with N2O emission rates increasing

from December to May and decreasing from September to

December, paralleling seasonal temperature changes.

They also observed diurnal variations in N2O emission

rates that correlated with temperature in the surface soil.

The expected higher emissions in the low-lying flood-

plain site (having low redox status) were not observed,

rather the reverse. Langeveld & Leffelaar (2002) modeled

underground processes to explain N2O profiles in the

soil. Their model simulates several biological and physi-

cal processes. O2 and CO2 profiles were satisfactorily sim-

ulated indicating that the respiration rates used in their

model were realistic. The N2O profiles were less well sim-

ulated. They concluded that their assumption of homo-

geneity within soil layers was probably incorrect.

We conclude that it is hard to make realistic inferences

about denitrification based on measurements that have

high spatial and temporal variability. This is because it is a

complex process operating on a fine scale in an environ-

ment where spatial heterogeneity of the factors influencing

the process is large. This makes denitrification a difficult

process to scale-up, to extrapolate and to model. Therefore

generally valid estimates of NO3 removal from groundwater

by denitrification are lacking. An approach that might

work for processes like denitrification is the search for so-

called hot spots and hot moments, where the process is

operating at a high rate (McClain et al., 2003). These spots

and moments probably cause the bulk of the nitrate re-

moval in landscapes. They occur because at some points in

space and time, an environmental factor that had limited

the process is optimised. Denitrification requires low redox,

pH>4, nitrate availability, carbon availability and a tem-

perature higher than a critical minimum. Searching the

conditions creating high rates in spatial data bases may

help to identify such hot spots and moments. 

Example 2: Biodiversity in ponds
Chase & Leibold (2002) tested Grime’s (1979) hypothesis

that local-scale species diversity first increases with slight

increases of productivity, but then declines to low diversi-

ty when productivity is high. This so-called hump-shaped

curve of species richness in response to productivity is

supported by a wide variety of data and predictions of eco-

logical models. This pattern is often seen in empirical

studies at relatively small spatial scales (Waide et al., 1999,

Mittelbach et al., 2001, Leibold, 1999, Dodson et al., 2000).

However, at regional spatial scales, species diversity often

monotonically increases with increasing productivity in-

stead of being hump-shaped (Curry & Paquin, 1987, Mit-

telbach et al., 2001). Because studies performed at differ-

ent spatial scales often consider different ecosystems and

employ different methodology, it remains unclear if these

relationships are scale-dependent or whether a single re-

lationship holds across scales. 
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must possess mechanisms for surviving and averaging

environmental variation over temporal scales less than

their lifetimes and spatial scales less than their home-

ranges. Whales come to the surface regularly to breath.

When they dive again, their tail, the so-called fluke, is

raised into the air. It is their habit to defecate at this par-

ticular moment, visible by a brown patch in the water. So

the defecation rate is easy to observe and is defined as the

proportion of fluke-ups at which the whale defecates. 

Whitehead  (1996) followed groups of Sperm whales in

the Pacific and used temporal and spatial variation in

defecation rates, which is a variation in feeding success,

for assessing variation in octopus distribution in the deep

ocean and the response of whales to this variation on a

temporal and spatial scale. Mean defecation rates (per

fluke-up), varied among years. When defecation rate is

high (a high feeding success), the whales travel only short

distances. If the variation in defecation rate is compared

with the mean defecation rate, it appears that for time in-

tervals of one day the coefficient of variation is somewhat

less than the mean. For time intervals between 10 and 100

days variance is low and for intervals of years the variance

is high compared to the mean. 

Apparently, temporal variability in the deep ocean is dom-

inated by features with wavelengths of years. If we look at

differences in variance with distance, we see that the vari-

ance over distances of about 100 kilometers is the same as

that over periods of few days: somewhat less than the

mean. However, over several hundred kilometres the vari-

ance in feeding success is larger, and similar to that over

time periods of several years. Over larger distances it is

about the same as the mean. 

What can we learn from this study in which a proxy (defe-

cation rate of Sperm whales) is used to estimate variabili-

ty in octopus distribution and density in the deep ocean?

Temporal variability in the deep ocean is governed by low-

Chase & Leibold (2002) chose thirty ponds nested within

ten watersheds. Each watershed had three ponds that

were similar in productivity and total area. Local species

richness within ponds was defined as the number of

species in a pond, regional species richness as the total

number of species observed in the three ponds within

each watershed. At the local scale, both producer and an-

imal species richness had a statistically significant hump-

shaped relationship with primary productivity. In con-

trast, at the regional scale (among watersheds), species

diversity linearly increased with productivity. An explana-

tion might be that the differences in species composition

among localities within regions increase with productivi-

ty. To test this hypothesis the authors calculated species

dissimilarity of each watershed by quantifying the species

compositional differences among the three ponds within

a watershed. Species dissimilarity indeed increased with

productivity; ponds within watersheds of low productivi-

ty shared the majority of their species, whereas ponds

within watersheds of high productivity shared few.

Without going into the mechanisms causing these differ-

ences we may conclude that spatial scale dictates the pro-

ductivity-diversity relationship. Species diversity, when

viewed at different spatial scales, can respond in funda-

mentally different ways to the same environmental factor

(productivity in the case of the ponds). Thus, straightfor-

ward up-scaling from local to regional scale is not appro-

priate in biodiversity studies.

Example 3: Variability in the feeding
success of Sperm whales
Sperm whales (Physeter macrocephalus) feed on octopuses in

the deep ocean at depths of 200-1000 meter. Large ani-

mals with a low reproductive rate and low mortality like

the Sperm whale cannot react to environmental variation

through changes in reproduction or mortality, thus they
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frequency, inter-annual features, just as was observed in

studies focusing on variability at the surface (Steele 1985).

These features are found in the Pacific in the California

Current, the Humboldt Current (Peru) and the Equatorial

Undercurrent influenced by El-Nino effects. Spatial co-

herence of such phenomena is limited to scales of a few

hundred kilometres. The Sperm whales anticipate this by

using migration over ranges of 300-1000 kilometers as

their principal strategy for surviving in an unpredictable

habitat. Migration thus allows Sperm whales to survive

in an environment with unforeseen periods of food short-

age. In other words, migration allows them to maintain

high biomass and low reproductive rates in an environ-

ment, which at any location contains long unpredictable

periods of food shortage.

Implications of the scale of processes
for data analysis and modelling
The three examples of processes operating at very differ-

ent spatial and temporal scales illustrate that scale does

matter and that it is essential to identify the scale at which

processes are operating. More specifically, one needs to

identify the spatial scale at which the main factors operate

or are distributed: the resources or variables influencing

Figure 3. Performance of
the empirical statistical
species response model
VLITORS. For 38 species
the models discriminated
satisfactorily between
areas but poorly within
areas (shown is Rumex
hydrolapathum). For 37
species the models discri-
minated satisfactorily
between areas and within
areas (shown is
Filipendula ulmaria). For
10 species the models
discriminated poorly
between areas (not
shown). Dots indicate the
predicted probabilities;
the background color of
the grid cells indicate the
observed presence of the
species (blue absent,
green present) (after De
Becker et al., 2001).
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are averaged before calculation of the average attribute val-

ue or if the average attribute value is obtained from aver-

aging the separate calculated attribute values. If the rela-

tionship were non-linear such a procedure would result in

an aggregation error (Rastetter et al., 1992). Such an aggre-

gation error will increase as the concavity of the non-linear

function increases. To avoid such an error, when dealing

with non-linear models, one has to calculate the attribute

values first (apply the model at all grains, i.e., locations

where input variables are known) and next average the

function values (Bierkens et al., 2000). Examples of such

non-linear up-scaling functions are up-scaling from indi-

vidual-leaf photosynthesis to full-canopy photosynthesis,

up-scaling from small scale variation of the phreatic sur-

face to regional models, or up-scaling of measured daily

precipitation to average precipitation for a decade.    

Scale problems in empirical statistical
versus mechanistic modelling in land-
scape ecology
Ecological models generally link abiotic information (like

water availability and quality) to organisms. Mechanistic

ecological models, containing causal relationships de-

rived from experimental studies, are available for relative-

ly simple and thoroughly studied ecosystems (e.g., Van

Liere and Gulati, 1992, Janse et al., 1992). Mechanistic

model development is both time-consuming and expen-

sive. For the restoration of regional landscapes like wa-

tersheds and river valleys, generally applicable models

valid for a range of ecosystems are required. These ecosys-

tems and their interrelations are so complex that deter-

ministic knowledge fully covering all processes is often

not available and laborious experimental studies are not

feasible. The two examples presented below serve as case

studies illustrating the constraints related to scale issues

in both types of modelling approaches. What we can learn

them (for example temperature, the availability of water

or mineral nutrients, the distribution of plant cover or

prey) and the organisms consuming a certain resource

(for example denitrifying micro-organisms, herbivores or

predators). It is also important to identify the spatial scale

at which the interaction between resource and influencing

variable or consumer takes place, e.g., N-sources in the

soil and redox conditions; NO3 and denitrifying micro-or-

ganisms; plant growth and herbivores; predator and prey.

Van der Koppel et al. (in press) provide a simple frame-

work that explains how differences in the spatial scale at

which consumers and their resources function affect food

chain theory. Such a framework is useful to identify criti-

cal scale aspects and to assess the risks of anthropogenic

changes for trophic interactions by interfering with their

functional scales.

Both the denitrification example and the Sperm whale ex-

ample also illustrated that the temporal scale at which

processes are influenced can vary a lot. Denitrification is

affected by temperature and redox-conditions that vary

during the day and also among seasons and years. The mi-

gration of Sperm whales varied among years. The study of

biodiversity in ponds supported the notion that consider-

able insight can be gained by increasing the scale, both

spatially and temporally, in which species diversity is

viewed. Straightforward up-scaling from pond studies to

catchments seems inappropriate in this case, since it

would lead to erroneous conclusions for biodiversity in

catchments, because of the non-linearity between the lo-

cal scale and the catchment scale.

In the process of up-scaling among fine-scale components

(such as biodiversity in local ponds) to predict coarser-

scale properties of the aggregate (biodiversity in catch-

ments), one has to be aware whether or not the relation-

ship between variables and attributes is linear. If the mod-

el is linear it does not matter if the values of the variables
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from these examples is that the general principle that dis-

crepancies between the scale of observation, dominant

processes, and model calculations should be avoided is

frustrated in practice by limitations in data. Both modelling

studies focus on river valleys: one empirical statistical ap-

proach focused on the response of plant species on changes

in site factors (De Becker et al., 2001, Bio et al., 2002) and one

a mechanistic approach focused on geochemical flows

(Van der Peijl, 1997, Van der Peijl & Verhoeven, 1999,

2000). 

Empirical model for plant species
This case is an example of spatial ecological predictive

modelling, within the limitations imposed by data avail-

ability and model purpose given by environmental policy

makers. Policy makers, e.g., water and nature managers,

wanted a generally applicable model for Flemish river val-

leys although data only were available for four specific val-

leys. The data, collected from 1993-1997 in four nutrient-

poor Flemish lowland river valleys, consisted of presence

and absence records for groundwater-dependent plant

species and abiotic site conditions describing manage-

ment, soil, groundwater level and several groundwater

chemistry parameters. Biotic data, management and soil

were mapped in grids of adjacent regular square cells (20

x 20 m). Data on groundwater tables and water chemistry

were collected at a limited number of point locations

within each grid; hence, at a much smaller sampling scale

(or support) and with extensive un-sampled surface in be-

tween. This example thus deals with a number of specific

scaling constraints: limited extent of the study versus the

need for a wider geographical applicability of the model;

differences in support between variables; spatial autocor-

relation. 

The differences in support were relatively easy to over-

come. The variables sampled with less support were spa-

tially interpolated and up-scaled (to grid-cell size) to

match the other data. This was done by block-kriging fol-

lowing a semi-variogram model, since this gave a much

better result than standard block-kriging (De Becker et al.,
2001). Next, spatial auto-correlation in vegetation field

records and model residuals was assessed through em-

pirical semi-variograms; the residual semi-variograms in-

dicated spatial structure not accounted for by the model’s

explanatory variables (cf. Albert & Mc Shane, 1995). Mul-

tiple logistic regression modelling was performed using

two modelling frameworks. Generalized Linear Models -

GLM-  (Nelder & Wedderburn, 1972, McCullagh & Nelder,

1989) have been successfully applied in numerous eco-

logical studies (e.g., Austin et al., 1984, Margules et al.,
1987, Zimmermann & Kienast, 1999). Generalized Addi-

tive Models - GAM - (Hastie & Tibshirani, 1990, Yee &

Mitchell, 1991) have been applied in more recent studies

(e.g., De Swart et al., 1994, Huntley et al., 1995, Austin &

Meyers, 1996, Bio et al., 1998). Both enable ecologists to

model species response to a wide range of environmental

data using a link function (i.e., logit) between response

and predictor variables. Generalized Additive Models

form an extension of GLM. While GLM fit functions linear

in their parameters, allowing for linear and polynomial

response shapes, GAM are more flexible permitting both

linear and complex additive response shapes, as well as a

combination of the two within the same model (Hastie &

Tibshirani, 1990). More than half of the species were

modeled more accurately by GAM with data driven

smooth response shapes instead of second-order poly-

nomials. Model evaluation and comparison was based on

cross-validation and model discrimination (Bio et al.,
2002). A factor coding for the four sampled valleys was

most of the times very significant when added to the final

regression model. This points at regional differences (be-

tween the valleys) in species distribution that are not ex-
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to the final user, just as model applicability and credibility.

The models presented are, for instance, valid for nutrient

poor river valleys only, as model input data do not include

nutrient rich situations. So far, the predictive power of

these models could not be examined on other regions.

Validation against data collected elsewhere - i.e., an extra-

polation in space - is a next step to be taken to see how far

the applicability of these empirical models reaches (Bio et
al., 2002).

Mechanistic model for biogeochemical
flows in wetland ecosystems
An example of a model describing carbon, nitrogen and

phosphorus dynamics at the ecosystem level is the one de-

veloped by Van der Peijl & Verhoeven (1999) for river

marginal wetlands. This model was developed in the

framework of a European project on Functional Assess-

ment in European Wetland Ecosystems (Maltby et al.,
1996) to analyse nutrient-related processes and their im-

portance for ecosystem functions. In this case the con-

straints are: choices to be made in spatial and in tempo-

ral extent of the study in relation to the needed general ap-

plicability of the model and limited extrapolation possi-

bilities.

The model is a dynamic simulation model in STELLA and

has three layers, one for each element under investiga-

tion, i.e., carbon, nitrogen and phosphorus (Figure 4).

plained by the models. There may be differences in

species response to the explanatory variables due to val-

ley-specific pseudo-correlations with non-modeled vari-

ables. 

Overall, the regression models seemed ecologically sound

and predicted species distribution in Flemish river val-

leys adequately, despite discrepancies between data qual-

ity and model assumptions. Figure 3 shows two examples

illustrating model performance. The model of Rumex hy-
drolapathum only predicted well between areas and not

within. The model for Filipendula ulmaria predicted ob-

served distribution well both within and between areas.

This study demonstrated that predictive modelling using

standard statistical regression procedures can be reason-

ably successful with GLM or GAM in the presence of data

with the following characteristics: non-homogeneous ag-

gregated data; data that are spatially auto-correlated; part-

ly interpolated and partly measured explanatory variables;

explanatory variables and response variables collected at

different scales; and correlated explanatory variables.

However model application and inference should be hand-

led with care, as assumptions of independent, error-free

explanatory variables and independent errors are clearly

not met. We observe that, in practice, models have to suit

model purpose as well as possible even if data do not ful-

ly support model assumptions. Shortcomings, if not re-

movable, should be assessed and, at least, communicated

Figure 4. Conceptual dia-
gram of a site-model con-
sisting of two unit-
models. Each unit-model
consists of a nitrogen
sub-model, a carbon sub-
model and a phosphorus
sub-model. Within these
sub-models there is
internal cycling.
Landscape geochemical
flows are shown between
the unit-models (after Van
der Peijl & Verhoeven,
2000).



Landschap 20(2)72

Each layer has a basically similar set-up with a number of

plant and soil compartments with mass flows between

them. Carbon fixation, nutrient uptake, grazing by large

herbivores, decomposition, mineralization and denitrifi-

cation are important processes described in the model.

One of the main features of the model is a factor associ-

ated with soil redox potential, water table and soil oxygen

content, which influences most process rates. The most

important connections between the three model layers

are the control of carbon fixation by nitrogen and phos-

phorus availability, and the control of mineralization by

the litter C:N and C:P ratios.

The purpose of the model was to investigate the nature of

the interactions between the C, N and P cycles, to assess

what consequences these interactions have for water

quality flowing through the wetland, for carbon seques-

tration and for greenhouse gas emissions. Further, at-

tempts were made to quantitatively assess nutrient-relat-

ed functions in river marginal wetlands and to simulate

the effects of management and other human influences in

(or outside) the wetland on these functions.

After the initial calibration and validation of the model

with data collected in river marginal wetlands in England

(Van Oorschot et al., 1997), the model was used to test the

nutrient transfers between two connected ecosystems,

i.e., a wet, groundwater-fed slope and a floodplain along

the river Torridge, SW England (Van der Peijl & Verho-

even, 2000). The hydro-geomorphic unit (HGMU) con-

cept was used for defining a separate, complete unit-mod-

el for each of the two HGMU units within the wetland

(Figure 4). These unit-models were connected by defining

the flows of nitrogen and phosphorus between them.

These flows, also called landscape geochemical flows,

usually consist of flows of water containing N and P. The

two units at the study site, Kismeldon Meadows, slope

and floodplain, were separated by a ditch, which caught

most of the run off and shallow groundwater flows from

the slope. Only an estimated 1% of the N and P that left the

slope unit in the water outflow reached the floodplain

unit; the rest was caught in the ditch, which prevented the

geochemical flows from taking their natural course. To

examine the influence of this ditch, the model was run for

the same site, but without the ditch. This is comparable to

a situation of a restored site, where run-off and shallow

groundwater containing nutrients can freely flow from

the slope to the floodplain.

The computer simulation experiment reconnecting the

slope and floodplain showed that this (1) increased the

nutrient input into the floodplain, causing a higher

biomass production, and (2) increased the wetness of the

floodplain, causing slower decomposition, which togeth-

er (3) led to a faster soil organic matter accumulation in

the floodplain. Nutrient inflows became relatively more

important compared to atmospheric deposition, espe-

cially for phosphorus. By connecting the slope and the

floodplain, 20 % more nitrogen and 18% less phosphorus

flowed into the river.

This model has a great level of detail with respect to the

various biogeochemical processes involved and requires

the availability of field data such as C, N and P stores in

plants, soil organic matter, and other soil pools. It also re-

quires many environmental parameters, such as climatic

data, soil characteristics, water level fluctuations, etc. It

has been shown to be effective in describing C-N-P inter-

actions in wetland ecosystems, and has been sufficiently

robust to implement a two-unit model in a landscape with

two hydrologically connected wetland ecosystems (Van

der Peijl & Verhoeven, 2000). Further spatial expansion

of the model would be possible, although there is not

much opportunity for modelling small-scale hydrological

patterns in multi-unit (or grid-based) approaches.
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ent conditions, the use of spatial autocorrelation as mod-

el term or residual information has serious drawbacks.

On the one hand, neighborhood or other spatial depen-

dence information is not directly available, and the as-

sumption that levels of spatial dependence for new sites

or conditions are similar to those found at the modeled

sites may not be valid. On the other hand, a spatial depen-

dence term in the model will act as an indirect variable

accounting for—and, possibly, masking part of—the ef-

fect of several direct, ecologically relevant variables. Veg-

etation records and records of abiotic site conditions tend

to be auto-correlated too, and an explanatory variable

defining the neighborhood of a site in terms of a species’

occurrence will combine biotic (e.g., species’ dispersal

ability or inter-species competition) and abiotic (favor-

able or non-favorable site conditions) information. This

will render robust but less informative and, possibly, less

generalizable models. Only part of the spatial autocorre-

lation in the response variable is likely to be explained by

the explanatory variables in the regression model. Assess-

ment of the residual spatial variance can aid model evalu-

ation, and highlight shortcomings in explanatory vari-

ables or model structure (e.g. Robertson & Freckman,

1995, Begg & Reid, 1997, Gotway & Stroup, 1997, Köhl &

Gertner, 1997, Bio et al. 2003).

The main problem with empirical statistical species mod-

els is that there is little cause-effect knowledge incorpo-

rated. Of course, the choice of certain site conditions as

potential predictor variables is based on knowledge of

how these conditions affect species, but for the rest the

model is merely statistic. The potential danger of pseudo-

predictions is larger when less predictor variables are in-

cluded, when the model is spatially extrapolated and es-

pecially when the short time scale of a study is not bal-

anced to its large spatial scale. Van der Rijt et al. (1996)

developed a model for predicting vegetation zonation in

Discussion
Empirical ecological models are often based on available

data that were not explicitly collected for that purpose or

on limited data sets especially collected for the purpose of

model development (see De La Ville et al., 1997, Ertsen et
al., 1998, Bio, 2000). Therefore, quantity and quality of

data is of utmost importance. An ideal data set for eco-

logical modelling contains a sufficient number of sam-

ples that are representative of and well distributed in the

modeled geographical and environmental ranges, and

that satisfy model assumptions. Unfortunately, such ide-

al data sets are rarely found, and the urgent need for swift

restoration measures presses modelers to do with less

than ideal data (see Olde Venterink & Wassen, 1997). 

Classical statistical inference is based on the assumption

of independent observations collected at randomly cho-

sen locations (De Gruijter & Ter Braak, 1990). However,

records of spatial dependence in ecological data are nu-

merous (e.g., Rossi et al., 1992; Tilman, 1994, Fielding &

Bell, 1997), as neighboring samples tend to be more sim-

ilar than samples further apart. Using standard statistics,

the presence of spatial autocorrelation in data and in

model residuals may render error estimates and associat-

ed significance tests unreliable. It may also affect model

choice, as variable selection is generally based on ex-

plained and residual variance. Nonetheless, these data are

generally treated as independent, random samples and

modeled using classical statistical procedures (e.g.,

Nicholls, 1989, Hill, 1991, Buckland & Elston, 1993).

Recently, methods have been developed for the modelling

of spatial dependence, or auto-correlation, in regression

using, for instance, neighborhood information (Sokal &

Oden, 1978a, b, Smith, 1994, Wu & Huffer, 1997). Geo-

statistical modelling of residual spatial dependence is an

alternative approach under development (Pebesma et al.,
2000). However, for prediction at other sites or in differ-
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dependence of flooding in outer dike areas. They coupled

several maps in a GIS and incorporated vegetation re-

sponse regression models (based on a geographically

small area) to these spatial data. The model was used for

evaluation of the effects of different sluice management

schemes on outer dike vegetation zonation in a wider

area. There is nothing wrong with such predictions as

long as flooding frequency and duration are the causal

factors for vegetation zonation in all areas where the

model is applied (Wassen et al., 2003). The fact that we

have to be cautious with extrapolation in time with this

category of models is ironic, since this is what these mod-

els were developed for: extrapolations into the future.

High-detail (in terms of many processes incorporated)

dynamic simulation models such as the one developed by

Van der Peijl & Verhoeven (1999, 2000) have the advantage

of integrating a strong knowledge base on biogeochemi-

cal interactions in order to analyze or predict the effects of

major environmental drivers such as water level fluctua-

tions and nutrient inputs in run-off on overall ecosystem

performance, such as the water quality improvement

function in wetlands. The drawback of the approach is

that large data sets of site conditions are needed to im-

plement the model. These would normally only be avail-

able if the site would have been intensively studied. An-

other limitation of the model is the coarse grain of study

- it assumes homogeneous site conditions within certain

hydrogeomorphic units. Such units subdivide the land-

scape in a discrete way, comparable with the ‘ecotope’

concept. Coarse-scale spatial variation in terms of multi-

unit wetland landscapes can be tackled by running the

model in every unit separately and using extra algorithms

to describe the hydrological connections between the

units. The model would be easier to apply if it would be

simplified and implemented in a raster-GIS. There have

been some first attempts to do this, and much simpler dy-

namic models simulating C-N-P interactions have been

generated, which still kept their original level of pre-

dictability. If coarse-scale data for other units are unavail-

able, a statistical description of the fine-scale compo-

nents across the extent of the coarser scale should be ac-

quired. The fine-scale attributes can then be ranked by

their contribution to the aggregation error. In such a way

the important sources of error can be detected (Rastetter

et al., 1992). To detect scale-dependent processes and pat-

terns, one depends on observation sets or model calcula-

tions of fine grain and large extent. Collecting data of fine

grain and large extent is costly and time consuming.

Therefore, an a priori choice of a certain scale of observa-

tion and/or modelling is often unavoidable. Clear under-

standing about the scale at which relevant processes op-

erate is essential when choosing the appropriate scale of

observation and modelling. A general guideline in choos-

ing an appropriate scale of study is that discrepancies be-

tween the scale of observation, dominant processes, and

model calculations should be avoided (Rietkerk et al.,
2002). Since in most environmental studies such discrep-

ancies are a given and thus cannot be avoided, they should

be explicitly acknowledged.

Although we have identified a whole range of pitfalls and

possible sources of error involved in attempts to scale up

patterns and processes from small-scaled site studies, we

can identify several promising approaches, which can be

further developed. A first approach is the use of statisti-

cal regression of spatial data, with attention for spatial au-

tocorrelation including assessment of spatial variance. It

is important that statistical correlations found with these

models are validated with knowledge on cause-effect re-

lations. If such knowledge does not exist for the specific

relations found, these should be interpreted with care and

should ideally still be studied in a causal-analytical way.  A

second approach is the implementation of simplified
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these systems. Van den Bergh et al. (2001), Pieterse et al.
(2002) and Gielczewski (2003) provide good examples of

attempts of such integrated models. Although these mod-

els also suffer from scale discrepancies, they at least pro-

vide an explicit framework revealing them, since the ques-

tions asked have to be translated into spatial scenarios

and subsequently into input maps whereas the models

provide output maps and for all of these steps the spatial

and temporal scale is clear.      
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mechanistic models of biogeochemical and population

ecological processes in a raster-GIS, with simultaneous

modelling of the spatial relationships between raster cells

in a hydrological model. The mechanistic model should

be parameterised and calibrated with data from studies

in one or two spatial cells in the study area. Only a limited

number of sensitive parameters for the model have to be

measured in all the raster cells.

We advocate a combination of approaches, empirical

models for species response and mechanistic modelling

of biogeochemical processes, in order to gain insight into

regional landscapes and to allow for some form of pre-

diction of environmental and management effects on

Abstract
Inquiries into the issue of scale become increasingly im-

portant in the field of landscape ecology and natural re-

source modelling and analysis. Scales of observation and

modelling are often pre-set based on the a priori descrip-

tion of the system of study. In this paper we focus on up-

scaling approaches. We emphasize that predictability

depends on the relation between the spatial and the tem-

poral scale of study. Three examples of scale dependent

processes illustrate the importance of identifying the

scale at which processes operate to avoid erroneous con-

clusions. Two modelling studies show a number of scale

related bottlenecks in data, interpolation, extrapolation

and modelling. In statistical modelling of spatial data

spatial dependence should be examined, truly indepen-

dent validation data sets should be available and spatial

extrapolation should be done with care. In mechanistic

modelling of processes spatial up-scaling requires in-

formation on landscape heterogeneity and how this in-

fluences the modelled processes. Although a general

guideline in choosing an appropriate scale of study is

that discrepancies between the scale of observation,

dominant processes and model calculations should be

avoided, in most landscape ecological studies such dis-

crepancies are a given. They should be explicitly ac-

knowledged and the information in this paper may help

in recognizing them and dealing with them.  
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